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Abstract 

Thermal analysis by classical molecular dynamics simulations is discussed on hand of heat 
capacity of crystals of 9600 atoms. The differences between quantum mechanical and classical 
mechanical calculations are shown. Anharmonicity is proven to be an important factor. Finally, 
it is found that defects contribute to an increase in heat capacity before melting. The energy of 
conformational gauche defects within the crystal is only about 10% due to internal rotation. The 
other energy must be generated by cooperative strain. The conclusion is that the next generation 
of faster computers may permit wider use of molecular dynamics simulations in support of the 
interpretation of thermal analysis. 
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Introduction 

In the past, nature was either studied by experiment or through theory. In the 
last two decades a third method evolved, the simulation using computers. Being 
neither theory nor experiment, it nevertheless provides an interesting base for 
the understanding of many physical problems that are too complicated to be 
solved analytically, and are too globally treated in experiments. Three major 
simulation techniques are nowadays used in polymer science. Molecular me- 
chanics and energy minimizations [1, 2 and others] can lead to solutions of 
static problems and molecular conformations. In Monte Carlo methods [3-6 
and others] the problem is normally abstracted and fundamental properties like 
scaling behavior are derived. In molecular dynamics methods, finally, [7-12 
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and others] one makes use of solutions of the Newtonian equations. In a short 
time regime (up to nanoseconds) a relatively close relation to physical parame- 
ters is possible by the latter method. 

Thermal analysis is based on measurements of heat capacity, heats of transi- 
tion, or heats of reaction. All of these are well understood in terms of their mo- 
lecular origin. It should thus be possible to simulate thermal analyses on 
computers. Although at present rather large computer resources are necessary 
to approach sample sizes unaffected by microscopic fluctuations and surfaces, 
extrapolating the enormous advance of computer capacity in recent years, it 
may not be long that thermal analysis equipment may be replaced by a com- 
puter. Our present thermal analysis simulator was a CRAY-XMP supercom- 
puter needing the order of magnitude of hours to establish thermal equilibrium 
for a 2.10 -19  g sample. 

In the present analysis the molecular dynamics simulation is based on clas- 
sical mechanics. This implies certain restrictions in the interpretation of ther- 
modynamic data, especially at lower temperatures. In this paper we will discuss 
heat capacity, which can be deduced from molecular dynamics simulations, its 
validity and some limiting factors. 

M o d e l  

The data for the 'thermal analysis' were extracted from earlier reported com- 
puter simulations of paraffin/polyethylene using a united atom model [ 13, 14]. 
The CH2 group was collapsed to an atom of mass m= 14.03 Da. Each crystal 
consisted of 192 chains, each chain of 50 united atoms, the total number of at- 
oms thus being 9600. In this paper the discussed initial structure is 
orthorhombic with the lattice parameters a=0.74,  b=0.49, c=0.25 nm [15], c 
being the chain axis. The size of the crystals is about 6.6.6.3 nm 3. The crystals 
were unconstrained, in contrast to other simulations [11, 16, 17]. The system 
can be thought of being a microcanonical assembly at zero pressure in vacuum. 
No boundary conditions were used. The cross-section of the crystal in its initial 
state is given in Fig. 1. 

For the MD technique the following Lagrangian was taken 

1 N 
L = + ) ?  + (1) 

l = l  

N - 1  
- s D ( 1  - e -~ (r,~,, _,.,))2 ( 2 )  

i = l  

-NX 2-1 Ko(cosO - cOSOo) (3) 
i = l  2 
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F i g .  1 Initial structure of the orthorhombic crystal i n  x-y projection (along the chain a x i s )  

N - 3  

i: (8.37 acosT, i.i+l,i+2, i+3-FbcosTi3i+l,i+2, i+3) (4) 

- 2  4~ _ o 
li -j ] -> 4 

(5) 

The term (1) is the kinetic energy, followed by the potential energy 
terms (2)-(5).  The second term represents the stretching vibrations of  adjacent 
(united) atoms. The third term describes the three-body bending interaction 
with | being the bending angle between the atoms i,i+ 1 , i + 2 .  The four- 
body bonded interaction, giving the internal torsional vibrations, is expressed 
in (4) with x~.i+1.i+2.~+3 representing the torsional angle between the atoms 
i , i + l , i + 2 , i + 3 .  The interaction between any two nonbonded atoms is de- 
scribed by a Lennard-Jones potential in (5). The cutoff parameter for the non- 
bonded interaction was 1.0 nm, and N is the number of atoms. The parameters 
for (1)-(5)  are listed in Table 1 [16, 18-20]. 

The Lagrangian equations of motion 

cZL dOL 

Oqj dt c3~lj 
- 0  j = 1 , 2 , .  . . . . .  , s  (6) 

J. Thermal Anal,, 46, 1996 



856 KRE1TMEIER et al.: MOLECULAR DYNAMICS 

Table  1 Model  parameters  

Two-body interactions 

D = 334.72 kJ mol -l 

r ,  = 0 . 1 5 3 n m  

a = 19.9 nm -1 

Three-body interactions 

K| = 130.22 kJ mol -l 

| = 113 ~ 

Four-body interactions 

a = 18.41 kJ mol -I 

b = 26.78 10 mol -l 

Nonbonded interactions 

= 0.477 kJ mol -~ 

cy = 0.398 nm 

were then solved on a CRAY-XMP computer at Oak Ridge National Labora- 
tory. For further information on the technique see references [21-23]. 

R e s u l t  

Several simulation runs were used for the discussion in this paper. Their 
code, length of time and initial temperature are listed in Table 2. 

Table  2 Run parameters  

Run Code Time/ps  Initial T/K 

D01 10 65 

D02 10 165 

D03 10 242 

D04 10 345 

D05 100 436 

To create the temperature for the simulation, a randomly distributed set of 
momenta was given to the atoms. The temperature was then calculated after 
various times of motion according to 

3 1 N -~N kBT = ~m X (jq2 + ~? +~lz) (7) 
i = l  

with kB being Boitzmann's constant. 
Due to the cutoff of the nonbonded interaction at 1 nm, the integrator lost 

energy [24]. This energy loss is equivalent to a cooling rate of approximately 
0.8 K ps -~ and sufficiently slow to keep the system thermally in steady state. 
The range of the run D05 was chosen to cover the melting point of paraffins 
with a length of 50 carbon atoms, which is about 365 K [25]. Figure 2 displays 
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Fig. 2 Tempera tu re  during run D05 as a function of  t ime (cooling curve) 

the temperature decrease of run D05. Similar, but shorter curves describe the 
other runs. The simulations allow thus to establish a typical cooling curve.  

Since the total energy of the system is also available at any instant, the en- 
ergy vs.  time and temperature vs.  time curves could be combined, as shown in 
Fig. 3. A more detailed view is presented in Fig. 4. The energies are given in 
kJ mo1-1 of united atoms. 

The changes in energy and in temperature permit the calculation of heat ca- 
pacities 4 according to 

C = <El> - <E2> (8) 
< ~ > - < ~ >  

As was shown earlier [13], thermal equilibrium is achieved in about 2 to 
3 ps. For the short time simulations, the averaged energy differences and aver- 

3 The temperature changes of the short-time simulations are small, so that, for less 
temperature-sensitive investigations, the corresponding systems were assumed to be at constant 
temperature. 

4 The heat capacity of Eq. (8) is simulated at constant pressure, similar to the experimental 
measurements. All compiled heat capacities derived from vibrational spectra are at constant volume 
and are converted to Cp using standard thermodynamic equations. 
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aged temperature differences were therefore taken from the last 6 ps of the 
simulations. For the 100 ps run (D05), which overlaps with run D04, two values 
were calculated, one for the high temperature regime and one for the low tem- 
perature regime. The resulting heat capacities are plotted in Fig. 5. The error 
bars indicate the uncertainty solely due to the geometric averaging process. 5 

D i s c u s s i o n  

Before discussing the results, one needs to briefly review the basics of heat 
capacity in the solid state. The storage of heat in a solid can only be understood 
if one uses quantum mechanics. Essential is that energy, in this case thermal en- 
ergy, can only be added to a system if the amount is big enough to carry the sys- 
tem from its ground state to at least its first excited level. This is the reason why 
all heat capacities go to zero when the temperature is approaching zero (kelvin). 
Even if the thermal energy is comparable to or larger than the separation of the 

5 Note that the values resulting from this procedure are better than expected from F i g .  4 .  
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Fig. 4 Energy loss vs. temperature for single runs. Included are the 3R line from Fig. 3 
(dashed lines) and the curves corresponding to the obtained values of  Fig. 5 (drawn 
out) 

e n e r g y  l eve l s ,  l i m i t a t i o n s  app ly .  C o n s i d e r i n g ,  as  an  e x a m p l e ,  a s y s t e m  m a d e  o f  

u n c o u p l e d  h a r m o n i c  o s c i l l a t o r s  w i t h  t he  s a m e  f r e q u e n c y  ( E i n s t e i n  m o d e l ) ,  o n e  
c a n  e a s i l y  d e d u c e  the  h e a t  c a p a c i t y .  6 

6 Note that for moderate temperatures, the difference between Cv and Cp is in the percentage range 
and is not of  importance for the following qualitative discussion. 

J. Thermal Anal., 46, 1996 



860 KREITMEIER et al.: M O L E C U L A R  D Y N A M I C S  

50 1 i l ' ! i 
sirnqlation 

cxpetimetlt - -  
45 ~ . . . .  calcOlafl'on :~- ~- 

40 . . . . . .  i . . . . .  . . . .  

'~ 25 

~ 20 

~5 ........... i ............... i. .............. ..................... 

1 0  - .  �9 !." . . . . .  ~ : i 

. . . . .  U . . . . . . . . . .  i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

5 .... :C  . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . .  . . . . . . . . . . . . .  . . . . . . . . .  . . . . . . .  

o "" ~ i i i i i 
50 lO0 150 200 250 300 350 400 450 500 

temperature [K] 

F i g .  5 H e a t  c a p a c i t y  C o vs .  t e m p e r a t u r e ,  d e d u c e d  f r o m  t h e  r u n s  D 0 1 - D 0 5 .  I n c l u d e d  a r e  e x -  

p e r i m e n t a l  r e s u l t s  f r o m  J in  [26]  a n d  c a l c u l a t e d  d a t a  u s i n g  t h e  A T H A S  d a t a b a n k  s y s -  

t e m  [ 2 7 ,  28 ]  

O f 2 e x  ( e f t  

G=R. 

0 
with |  h•/kB and the difference in energy level equal to kB| Equation (9) is 
displayed in Fig. 6 for different | The curves show the contribu- 
tion of an oscillator of given frequency to the heat capacity as a function of tem- 
perature. It can be seen clearly that oscillators with high frequencies do not 
contribute very much to the heat capacity in the temperature range where poly- 
mers are used. Every oscillator can accept the same amount of energy, namely 
R= 8.314 J (K mol) -Z, only if the thermal energy is much larger than the differ- 
ence in energy levels. 

Classical mechanics states in contrast, that each oscillator contributes 1R to 
the heat capacity regardless of temperature. A continuous increase of the ampli- 
tude of motion is possible at any temperature. Overall each energy term for a 
generalized coordinate which has a quadratic dependency in the coordinate con- 

J .  T h e r m a l  A n a l . ,  4 6 ,  1 9 9 6  
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Fig.  6 Calculated heat capacity for the Einstein mode l  for different O-temperatures  accord-  

ing to Eq. ( 9 )  

tributes R/2 to the heat capacity. This is known as the equipartition theorem. In 
this respect an oscillator has two R/2 contributions, a kinetic one and a potential 
one. This also implies that there are deviations if the dependency on the coor- 
dinate is not quadratic. Looking at Eqs (1) to (5), it is obvious that only the 
kinetic energies and the bending term should deliver R/2. All other parts are an- 
harmonic, having an upper limit in binding energies. The influence of the 
anharmonicities on a single linear chain was investigated by Sumpter, Noid and 
Wunderlich [29]. The result was that the contribution to the heat capacity de- 
creases slightly at higher temperatures. There is an easy way to qualitatively 
understand this effect. Consider as an example the limiting heat capacity for a 
particle in such an open potential in one dimension (for example a Morse po- 
tential that is limited in the direction of large bond length due to dissociation). 
For low temperatures, the anharmonicity can be neglected, the particle is an os- 
cillator contributing 1R. At high temperatures, the particle will dissociate from 
the restricting potential and contributes as a free particle only the kinetic en- 
ergy, i.e. R/2. This means that approaching dissociation, the anharmonicity 
leads to a reduction in the contribution to the heat capacity. One can get the 
same result from the following argument. What is heat capacity? It measures 
the changes in energy due to changes in temperature. What is temperature? Ac- 
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cording to the kinetic gas theory, it can be connected to the kinetic energy. We 
used these definitions to evaluate the temperature in the simulations. So, in a 
first step an increase in temperature will lead to an increase in kinetic energy, 
meaning vibrational velocity. 7 

This increased velocity will also increase the amplitude of motion in our po- 
tential. If the potential is harmonic, a constant increase in potential energy 
results, irrespective of the amplitude. But in case of a Morse potential, the in- 
crease in amplitude will give decreasing changes in potential energy. Ultimately 
the potential energy will stop increasing at the top level of the potential (disso- 
ciation). This discussion is readily transferred to quantum mechanics. A 
quantitative discussion can be found in the Appendix. 

But, as long as the temperatures are not large, which is true for the presented 
simulations, the deviations are small. 

Additional informations concerning the problem quantum mechanics versus 
classical mechanics can be found in an article by Lacks and Rutledge [30]. They 
compare in great detail lattice parameters, moduli, Gruneisen parameters and 
expansion coefficients, derived through quantum mechanical and classical cal- 
culations using a quasi-harmonic approach. 

Figure 3 shows that the overall heat capacity is close to 3R, as expected from 
the chosen classical molecular dynamics simulation with united atoms. Each 
united atom has initially six degrees of freedom, three in position and three in 
velocity. In the solid state this leads to three vibrational degrees of freedom. As 
each oscillator contributes 1R in heat capacity, the classical heat capacity is 
3.1R=3R. A closer look at Figs 4 and 5 reveals, however, deviations from 3R 
in the lower temperature range as well as in the upper range. The deviations in 
the lower range may be due to several reasons. First, the simulation time could 
be too short. Despite being thermally in equilibrium, energy changes due to di- 
minishing volume fluctuations [31] in the first ten to twenty picoseconds may 
conceal a heat capacity contribution. Another possibility is the following. As 
long as the temperature is relatively high, the weak perturbation due to the non- 
bonded interaction (Eq. (5)) can be neglected. At low temperature, however, the 
influence becomes stronger and the intermolecular interaction slows the vibra- 
tional motions. This is comparable to a weakening of the vibrational potential 
and is anharmonic due to the Lennard-Jones potential (Eq. (5)). In analogy to 
the anharmonic effects discussed earlier, this should lead to a decrease of heat 
capacity. 

7 To be precise, the kinetic energy also includes rotational and translational parts. If they give rise 
for an ordered macroscopic movement,  for example a translation of the center of  mass,  these 
contributions must be excluded for the temperature calculation. In the presented simulations this 
could be neglected. 
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bonds  avai lable  for rotat ion is 9216  

Nevertheless, it must be clearly stated that in the low-temperature range the 
quantum mechanical effects limit the usefulness of the classical simulations. 
Therefore, the difference between the experimental values in Fig. 5 and the 
simulated data cannot be related to any specific cause in the simulation, even 
though the united atom model is a good approximation for paraffins or polyeth- 
ylene in most of the temperature range. A normal mode analysis s for the 
CH2-group of a linear chain (paraffin, polyethylene) (see for example [32]) re- 
veals that only 2, and with lesser precision 3 vibrations are sufficiently excited. 
These exited vibrations are the torsional- and accordion-like skeletal vibrations, 
and to a minor extend the C-C stretching mode. The latter couples weakly due 
to a relatively small deviation from 90 degree of the bond angle. All other 
group vibrations [32] have a much higher frequency. These three actual vibra- 
tions correspond well to the three vibrations of the united atom model. 

The positive deviation in the higher temperature regime is more interesting. 
As discussed above, it cannot be related to anharmonicity, because anharmonic- 

8 Note that a normal mode analysis is in itself a harmonic approximation. 
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ity would decrease the heat capacity. Although the contributions of the group 
vibrations to the experimental heat capacity increase in value beyond 3R, the 
calculations using the ATHAS 9 Data bank scheme (see dashed line in Fig. 5) 
show that there is still an additional positive deviation of the experimental data, 
also plotted in Fig. 5. The simulated data shows a similar trend, especially 
when looking at the detailed energy plot (Fig. 4). This added increase in heat 
capacity has to be a new effect. One possibility is the generation of defects in 
the crystal at higher temperature. Figure 7 shows the number of gauche confor- 
mations formed in the crystal of the 9600 united atoms. The values are in agree- 
ment with earlier simulations of smaller systems under constant volume 
conditions [33, 34]. At the highest temperature the maximum percentage 
reaches about 2% of gauche conformations. Infrared measurements of Kim, 
Strauss and Snyder [351 (see * in Fig. 7) support the generation of such an 
amount of gauche defects. Larger defects, like double gauche-bonds or 2gl- 
kinks were detected only infrequently (cf. Fig. 8). The percentage is about 
0.2%. The onset of the increase in gauche defects can be found at the same tern- 

9 Advanced Thermal Analysis System, see for example Refs [27, 28]. 
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perature where the heat capacity increases more steeply to a higher value. In 
the same temperature region a 'transition' from a more rigid, low-temperature 
phase to a more mobile (hexagonal) rotator-like phase could be detected 
[31, 36]. This finding supports a distinct increase in the disordering in the tem- 
perature regime below the melting point. ~0 Assuming that most of the extra heat 
capacity is due to the defects, one can deduce from the increase in heat capacity 
of about 1.5R (cf. Fig. 9), a contribution of about 44 kJ tool -I of defects. This 
can be compared to the energy difference between trans and gauche conforma- 
tions of 3.3 kJ mol -j in polyethylene. Clearly, about 90% are coming from 
other causes, when forming a defect. As most defects are simple gauche confor- 
mations, this indicates that defect creation is a cooperative effect. Reneker and 
Mazur [37] calculated several low-energy defect types with molecular mechan- 
ics. Although molecular mechanics suffers from its static treatment, the ob- 
tained values are in the same energy range, for example chain twist boundary 

10 Note that due to the short overall simulation time of 100 ps a macroscopic melting during the 
simulation is not possible. The simulated crystal is superheated at temperatures above about 
365  K .  This extends the regime where the disordering can be observed. 
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F i g .  1 0  Calculated heat capacity for a Morse potential m comparison with a harmonic poten- 
tial. The heat capacity is given in multiples of R.  ( F o r  p a r a m e t e r s  u s e d  in  the compu- 
tation, see Text) 

(90 ~ 32.7 kJ mo1-1, disclinations 72.1 kJ mo1-1, and interstitial-like dispiration 
49.2 kJ mol -~. But all of these calculated defects are more complex than the 
simple gauche defects, that dominate our dynamic simulation. 

C o n c l u s i o n  

In this paper it is shown that it is possible to simulate thermal analysis using 
molecular dynamics. However, one must be aware of the limitations due to the 
excitation probability of quantum mechanical vibrators. In this respect a united 
atom model is a good choice because two of the three modes of vibration resem- 
ble the two almost fully excited solid state vibrations in paraffin or polyethylene 
at room temperature. The third mode (united atom stretching) can be associated 
with the C-C stretching vibration which is at least partially excited, and the 
combined contribution of all other group vibrations. A full atom simulation 
would lead to overestimated vibrational contributions since the C-H bending 
and stretching vibrations have O-temperatures above 2000 K and contribute lit- 
tle to heat capacity at room temperature. This is especially critical for thermal 
analysis, but may also explain some deviations in other properties. In the future, 
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an incorporation of the implications of Fig. 6 into the classical molecular dy- 
namics simulation would improve the results. For the heat capacity, anhar- 
monicity as well as the generation and influence of defects were also investi- 
gated. While aharmonicity decreases the heat capacity, defects tend to show an 
increase. The melting of a polymer crystal, which has to start from the surface, 
seems to be preceeded by a generation of point defects, which contribute a sig- 
nificant amount to the heat capacity of the crystal. The defects are mainly 
simple gauche conformations, generated cooperatively with other energy con- 
suming processes (local strain energy). 
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Appendix 
In this appendix the influence of anharmonicity of a Morse potential on the 

heat capacity is shown in a quantum mechanical treatment. 11 As Morse could 
show, the Schr6dinger equation with the so called Morse potential 

1 ~  2 D(1-  exp (- ot (r- ro)) 2 ~  = E~ 
g 

can be solved analytically, p. being the reduced mass of the particle in the po- 
tential, D, the dissociation energy, ro, the equilibrium distance, and ct, a meas- 
ure of the stiffness of the potential. The resulting energy levels are 

~;n = t/co(n + 1/2) - x~co(n + 1/2) z 

with co being an effective frequency and x, the anharmonicity parameter. All of 
them are related to the parameters of the potential. Introducing the @-tempera- 

11For further information refer to Herzberg [38]. 
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ture 0=  ~colka and neglecting the zero point energy one gets for the partition 
function 

Q =  e kRT~ e T 
n = l  n = l  

m being the finite number of energy levels in the Morse potential. Using 

E = R T  2 dlnQ 
dT 

the internal energy is 

t E =  R . | . - x )  n - x n  2) e "r ~ e - -  T 
n n = l  

With the definition of the heat capacity 

Cv- 
dE 
dT 

the final result is 

G = R .  (0/732 �9 

( (1 - x) n - xn~? e ~ ~ ~ - 

n 1 ( (1 - x)  n - xn2) 2 e ~ ~ (1-x)en+ xe2 
I1 = T 

The following plot, Fig. 10, shows Cv vs. temperature. As example we took 
0.01 forx, |  K, and 12 energy levels. It can be seen that in the low tem- 
perature regime, there is a close similarity to the harmonic solution. For high 
temperatures the heat capacity of the Morse potential starts to decrease. In a 
real system there would be a continuous energy band above the Morse potential, 
representing the free state. Therefore the decrease will not go to zero, as in this 
calculation, but will stop at R/2 ,  the heat capacity for a free particle moving in 
one dimension. 
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